stepwise quadrature - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

stepwise quadrature - перевод на русский

NUMERICAL INTEGRATION
Gaussian integration; Gaussian numerical integration; Gauss quadrature; Gauss legendre quadrature; Gaussian Quadrature; Gauss–Lobatto quadrature; Gauss-Lobatto quadrature
  • 2}} – 3''x'' + 3}}), the 2-point Gaussian quadrature rule even returns an exact result.
  • ''n'' {{=}} 5)}}
Найдено результатов: 47
stepwise quadrature      

математика

ступенчатая квадратура

stepwise         
WIKIMEDIA DISAMBIGUATION PAGE
Stepwise (disambiguation)

['stepwaiz]

общая лексика

поэтапный

скачком

ступенчато

ступенчатый

медицина

постепенный

Смотрите также

stepwise approximation; stepwise change; stepwise discontinuity; stepwise estimation; stepwise maximization; stepwise method; stepwise minimization; stepwise process; stepwise quadrature; stepwise regression

наречие

общая лексика

уступами

в виде ступенек

ступеньками

постепенно

поэтапно

stepwise         
WIKIMEDIA DISAMBIGUATION PAGE
Stepwise (disambiguation)
шаг за шагом
stepwise         
WIKIMEDIA DISAMBIGUATION PAGE
Stepwise (disambiguation)
периодический, пошаговый
integral approximation         
  • Antique method to find the [[Geometric mean]]
  • The area of a segment of a parabola}}
FAMILY OF ALGORITHMS FOR FINDING THE DEFINITE INTEGRAL OF A FUNCTION
Numerical Integration; Numerical quadrature; Squaring of curves; Cubature; Integral approximation; Integration point; Numerical integration (quadrature); Quadrature rules; Approximate integration; Numeric integration

математика

интегральное представление (аналитической функции)

quadrature         
WIKIMEDIA DISAMBIGUATION PAGE
Quadrature (disambiguation)
квадратура (а)
quadrature         
WIKIMEDIA DISAMBIGUATION PAGE
Quadrature (disambiguation)
quadrature         
WIKIMEDIA DISAMBIGUATION PAGE
Quadrature (disambiguation)
quadrature noun math.; astr. квадратура; quadrature of the circle - квадратура круга
quadrature formula         
  • Newton–Cotes formula for&nbsp;<math>n=2</math>
Newton-Cotes formula; Newton cotes rules; Newton cotes formulas; Newton-cotes formulas; Newton and Cotes formulas; Quadrature formula; Quadrature formulas; Newton-Cotes quadrature; Cotes formulas; Newton-Cotes; Newton-Cotes formulas; Newton–Cotes quadrature; Newtonian-cotes; Newtonian cotes; Newton–Cotes formula; Newton–Cotes quadrature rule; Newton-Cotes quadrature rule; Newton–Cotes formulae; Newton-Cotes formulae

математика

квадратурная формула

формула квадратуры

cubature         
  • Antique method to find the [[Geometric mean]]
  • The area of a segment of a parabola}}
FAMILY OF ALGORITHMS FOR FINDING THE DEFINITE INTEGRAL OF A FUNCTION
Numerical Integration; Numerical quadrature; Squaring of curves; Cubature; Integral approximation; Integration point; Numerical integration (quadrature); Quadrature rules; Approximate integration; Numeric integration

['kju:bətʃə]

математика

кубатура

кубатурный

нахождение объёма

объем

существительное

общая лексика

объём

кубатура

математика

возведение в куб

Определение

Quadrature
Waves or periodic motions the angle of lag of one of which, with reference to one in advance of it, is 90°, are said to be in quadrature with each other. [Transcriber's note: If the voltage and current of a power line are in quadrature, the power factor is zero (cos(90°) = 0)  and no real power is delivered to the load.]

Википедия

Gaussian quadrature

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, …, n. The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as

1 1 f ( x ) d x i = 1 n w i f ( x i ) , {\displaystyle \int _{-1}^{1}f(x)\,dx\approx \sum _{i=1}^{n}w_{i}f(x_{i}),}

which is exact for polynomials of degree 2n − 1 or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1].

The Gauss-Legendre quadrature rule is not typically used for integrable functions with endpoint singularities. Instead, if the integrand can be written as

f ( x ) = ( 1 x ) α ( 1 + x ) β g ( x ) , α , β > 1 , {\displaystyle f(x)=\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x),\quad \alpha ,\beta >-1,}

where g(x) is well-approximated by a low-degree polynomial, then alternative nodes xi' and weights wi' will usually give more accurate quadrature rules. These are known as Gauss-Jacobi quadrature rules, i.e.,

1 1 f ( x ) d x = 1 1 ( 1 x ) α ( 1 + x ) β g ( x ) d x i = 1 n w i g ( x i ) . {\displaystyle \int _{-1}^{1}f(x)\,dx=\int _{-1}^{1}\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x)\,dx\approx \sum _{i=1}^{n}w_{i}'g\left(x_{i}'\right).}

Common weights include 1 1 x 2 {\textstyle {\frac {1}{\sqrt {1-x^{2}}}}} (Chebyshev–Gauss) and 1 x 2 {\displaystyle {\sqrt {1-x^{2}}}} . One may also want to integrate over semi-infinite (Gauss-Laguerre quadrature) and infinite intervals (Gauss–Hermite quadrature).

It can be shown (see Press, et al., or Stoer and Bulirsch) that the quadrature nodes xi are the roots of a polynomial belonging to a class of orthogonal polynomials (the class orthogonal with respect to a weighted inner-product). This is a key observation for computing Gauss quadrature nodes and weights.

Как переводится stepwise quadrature на Русский язык